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Abstract

The effect of finite sample thickness on material elasticity measurements made
using an Atomic Force Microscope (AFM) has been calculated. The model includes an
elastic layer on an elastic foundation and simulates sample indentation under an applied
load, for rigid axisymmetric tips with conical, paraboloidal, and hyperboloidal profiles.
The results show that a common approach to estimating elastic modulus from force-
displacement curves can lead to significant error that depends on the unmits of
measurement. A method to estimate this error unambiguously and correct it is proposed.
In addition, it is shown that elasticity estimates for monolayer thick samples using the
force-modulation technique have substantial, sample thickness-dependent error. Local
thickness variation can result in misleading contrast in force modulation images for

samples that are several nanometers thick.



Atomic Force Microscopy (AFM) measurements are often made on thin film
samples with thickness ranging from few nanometers to microns. Quantitative elasticity
measurements using AFM are usually interpreted assuming semi-infinite sample
geometry. 2 In this paper we model the effect of substrate on elasticity measurements
made on thin films. This effect is particularly important when Young modulus mapping is
performed on samples exhibiting inhomogeneous thickness variation'’, and when a
breakdown of macroscopic models of elasticity is tested. The modulus of elasticity for
typical polymeric and biological samples is usually several orders of magnitude smaller
than the modulus of the underlying hard substrate!. We calculate the sample's indentation
by considering a rigid axisymmetric tip under an applied load, and we report a significant
error arising from the common assumption of infinite sample thickness. We consider
conical, paraboloidal, and hyperboloidal tip geometries.

Presently the most common techniques for measuring elasticity with high spatial

. ) . "
resolution are indentation measurements % 6!

and force-modulation ** experiments,
which are performed using AFM. These measurements are interpreted using a model for
a paraboloidal or conical tip elastically indenting a half-space sample. However, sharp
AFM tips often have a conical shape with a rounded apex (manufacturers usually specify
10 - 100 nm radius of curvature). Thus, to simulate this shape we choose a hyperboloidal
tip profile. Figure 1a shows the shapes of tips we use, Figure 1b shows the geometry of
indentation and introduces the variables and parameters we use later in this article.

The elastic modulus for a semi-infinite sample can be estimated using the load-

indentation dependencies as described by Sneddon. !4
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Equations 1a-¢ correspond to conical, paraboloidal and hyperboloidal shapes of
revolution, respectively. Here F is load, 5— indentation, a- contact area radius, R — tip
radius of curvature, o —tip semi-vertical angle, E - Young modulus, o— Poisson ratio, as
illustrated in Figure 1. From Equations 1a-b it may be seen that a linear fit in log(F) vs.

log() coordinates has an intercept related to the Young modulus:

_ 1o 2E tan(ax)

log(F) = log(mj+ 2log(s) (2a)
_. [ 4EJR \ 3 .

log(F) = log[ X 1_02))+510g(5) (2b)

We first note that using Equation 2a (conical shape) for tips with rounded apexes
results in considerable error. For example, in order to estimate the Young modulus within
a factor of two (using hyperboloidal tip with 20° semi-vertica] angle and 10 nm radjus of
Curvature, according to Equations 1¢) the maximum indentation should be larger than 2.5
Hm. On the other hand, Equation 2b gives factor of two error for indentations that are ca
400 nm using the same parameters. This is anticipated since Equations 1¢ transform into
1a when R <Xatan(q), and into 1b when a<< R cot(a).

It is intuitively clear that if a soft sample rests on a hard foundation, then the tip

starts to "feel" substructure when the radius of contact area is comparable to the sample's




thickness. * This results in force-indentation curves that are non-linear in logarithmic
coordinates. Figure 2 is an explicit illustration of such an effect. The Figure shows the
indentation of a ~30 nm thick spin-cast sample of coblock (polystyrene-
polyvinylpyridine) polymer on a microscope coverslip substrate.!® The tip radius was
approximately 60 nm.

For this type of response, Young modulus estimates can have an error that varies
with the units of measurements, Indeed, the error depends upon the distance between
intercept of the linear fit line (=1 unit) and the line corresponding to the conditions
assumed when deriving Eqpations 1. As illustrated in Figure 2, such an error can even
change sign. Using the units shown on Figure 2, the estimated modulus would be two
times smaller than the modulus obtained when a/% value is small.

To clarify this problem we have performed numerical calculations, which
simulate the indentation of an elastic layer bonded to an elastic foundation. Our
computations are based on an elastic layer model by Dhaliwal and Rau . Force-
indentation curves are obtained by solving a Fredholm integral Equation of the second

kind:

¢(t)+—j1<(xz)¢(x)dx E(mdt[j_f(_") J 0<r<1 3)

where K(x,) is the kernel of the integral Equation, £ and o are the Young modulus and

the Poisson ratio of the layer, respectively. The kernel is defined as:

K(x,t)=2 jH (2u).cos (%tu) cos (Z—xu Jdu

with




H(x)=- b+c(l+x)z+2bce"‘_ ’
e +b+c(l+ x*)+ cbe *
b=(3—40')—,u(3—40'1)
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w is the ratio of Lamé constants x =(E/2(1+0))/(E, /21 +0,) ", f{&) in Equation (3)

is the tip shape function, and here we use the following shapes !7 :

f(x)=axcota, conical tip @
fx)= a%R x* paraboloidal tip

f(x)=Root’a[,/(ax/Rcota)’+1—1}, hyperboloidal tip

where a is the radius of the tip-sample contact area, R - radius of the curvature of the tip
apex, « - tip semi-vertical angle as shown on Figure 1.
To find the indentation &, we use the condition that the normal component of

stress remains finite around the circle of contact between the tip and the sample. A
solution of (3) must satisfy !’
$@)=0 ®)

We solve Equation (3) numerically to determine the indentation. For each value
of the contact radius a we iteratively find the indentation & such that the solution of A3

satisfies (5), and we find the load force according to 7 :

F=-4[p(e)r ©6)

To estimate the error in the Young modulus unambiguously we plot logarithmic

force indentation curves in normalized coordinate units: '8
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hcot(a) conical
#_Fi-o%) tip (7a)
2h* cot(x)
5= J-2R
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h paraboloidal (7b)
= _F-R(1-c*| +dp
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For conical and paraboloidal tips, force vs. indentation curves plotted in these
coordinates change only when ratio of Lamé coefficients, 4, changes. © shows the
mismatch between the rigidity modulus of the top layer and the rigidity modulus of the
substrate. When x=1 and o=0;, the kernel vanishes and Equation 3 becomes equivalent
to the Abel integral equation considered by Sneddon . The elastic layer indentation
curves are not linear in logarithmic coordinates. Therefore, the slope and the intercept of
straight lines fitted through the data points depend upon the maximum indentation value,
The Young modulus can be estimated in normalized coordinates using Equations 1a and
1b with force and indentation substituted from Equations 7a and 7b for any maximum
indentation value. Hereafter we use the term Young modulus to indicate the true Young
modulus of the top layer material, and "estimated Young modulus" to mean the Young
modulus estimated from the linear fit, We calculate the ratio of this estimated Young
modulus to the modulus of the top layer (we call this ratio a reduced Young modulus) and
plot it versus normalized maximum indentation. Plots for different values of 4 are shown
in Figure 3. The left panel shows a calculation for a conical tip, and the right panel shows
the calculation for a paraboloidal tip. u values are shown to the right of each curve. We
used equally spaced & values in our calculation. In the AFM experiment this is correct
when the cantilever spring constant is considerably larger than the surface spring

constant.




The reduced modulus from F igure 3 can be used as a correction factor to obtain a
better estimate of the Young modulus for soft samples. Indeed, the lines for K less than
10 are almost indistinguishable. Therefore these lines can be used as correction factors
for samples with Young inodulus ~0.1 GPa and less and substrate modulus ~100 GPa.

For larger values of 4 an iterative procedure can be used to correct both E and A
As an explicit example using the data plotted on Figure 2, we calculate &  and

F according to 7b. We take 0=0.33 as a reasonable suggestion. The estimated Young
modulus is calculated from the intercept of linear fit in log-log coordinates according to
equation E=3exp(b)/+2 , where b is the intercept. Thus we obtain £=133 MPa. The
maximum normalized indentation is 5,_=0.88 . Using Figure 3 we can conclude that £ is
overestimated by a factor ~2.1, thus the true modulus £=63 MPa. This value of Young
modulus happens to be close to the one used to calculate the dashed line on Figure 2, 58
MPa. We note that our indentation values are not equally spaced, which contributes to
inaccuracy in the modulus determination. It is important to know the layer thickness
accurately to determine the correction for £ (since normalized indentation in 7b is
proportional to h? )- On the other hand, if the Young modulus is known, the steep
dependence of E on % can be used to estimate the layer thickness.

Force — indentation curves for a hyperboloidal tip were transformed accdrding to
Equation 7b. The results are shown on Figure 4, which shows the reduced Young
modulus plotted against the maximum normalized indentation, for 120 and different R
cot o) ratios. If the 2/(R cot @) ratio is small (less than 0.1) then the hyperboloidal tip
indentation curves are very close to the paraboloidal tip curve (dashed line). Also small

values of normalized indentation correspond to a small ratio of maximum contact area



radius to layer thickness, In this case, hyperboloidal tip indentation features are similar to
paraboloidal tip indentation, Otherwise, hyperboloidal punch indentation can not be
described by simple models and should be treated explicitly.

In addition, we would like to comment on the use of the force modulation method
to determme the elasticity of thin layers. In this method the sample oscillates at a certain
frequency, and this oscillation is sensed by the tip, which contacts the sample. The
amplitude of the tip oscillation depends upon a sample stiffness and, for a semi-infinite

sample, the Young modulus can be estimated using the following Equation *:

- & (26/12?— Dy ®)

where k. is cantilever spring constant, R — tip radius of Curvature, F' — average load
applied to the sample, 7 — modulation amplitude of the sample, & — tip oscillation
amplitude. For a thin sample such an estimate can resylt in substantial error. Figure 5
shows the reduced Young modulus estimated according to Equation 8 vs. applied load for
samples of different thickness, The calculation parameters are given in the figure's
caption. Figure 5 demonstrates that a change in the sample thickness may result in an
apparent soﬁness contrast in force-modulation i 1mages.

Figure 6 shows the same dependence as Figure 5, where the lines are calculated in
normalized coordinates using Equations 7b and 8 for several values of u. If the layer
thickness, tip radius and elastic parameters of substrate (E, o7) are known and a
reasonable assumption about Poisson ratio of elastic layer can be made, the reduced
elastic modulus from Figure 6 can be used to correct the error in measured modulus.

Since we do not know correct value for 4 (it depends on true Young modulus), an




iterative procedure can be employed to determine the correction coefficient £ . Let £* be
the symbol for the Young modulus, as estimated from equation 8. To obtain the
correction factor for E*, the corresponding average normalized load can be obtained from
Equation 7b. This gives the fixed position on the abscissa of Figure 6. The ratio of E* to
the Young modulus of substrate (E;) gives an approximate 4 value. From Figure 6, an
approximate correction factor E can be found, from which we find a better estimate for
pu=E*/E-E) This gives an adjusted correction factor E, which in turn improves the
estimate of 4. The iterations converge in a few steps to a best value for M, resulting in the
correction factor for E* For an explicit example, we consider E* =0.5 GPa, E/= 100
GPa, and F =1. The iterative process using these parameters is shown with circles on
Figure 6. Initially we have 1~0.005. From the figure we can see that for this u E~3.
This decreases the estimate of  to 0.0016, giving us E ~4.5 . The next step results in
E ~5, and subsequent iteration does not change F significantly. Thus, we can conclude
that the true elastic modulus is close to 0.1 GPa.

In summary, we have used an elastic layer on an elastic foundation model to
calculate the error associated with using elastic half-space model to estimate the Young
modulus in AFM indentation and force modulation experiments. We find that the
application of semi-infinite sample models can result in unpredictable and 'signiﬁcant
error in Young modulus estimates. Normalized coordinates should be used to obtain
consistent results. Contrast in the force-modulation imaging may be related to
inhomogeneity in the sample thickness. We have proposed a method for reducing the

error related to finite sample thickness.
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Figure Captions

1. (a) AFM tip profiles considered in this paper. a - semi-vertical angle, R — radius of

curvature of the tip apex. (b) Geometry of sample indentation: &- indentation; F —
load; a — contact area radius; £, cantilever spring constant; / — sample layer thickness,
E, E}, o, o1 - Young moduli and Poisson ratios of the sample layer and substrate,

respectively.

- Deviation of load-indentation from power law dependence. Force — indentation data
was collected on a ~30 nm thick spin-cast sample of coblock (polystyrene-
polyvinylpyridine) polymer on a microscope coverslip substrate. The tip radius was
approximately 60 nm. Fitting to a straight line in logarithmic coordinates gives an
error in the Young modulus which depend upon the origin that is chosen for log(9),
which is determined by the units of measurement. Here a solid line is the best linear
fit to the force-indentation values that are shown as "+ symbols. The dashed line was
calculated'according Equation 1a with the Young modulus calculated from the data
subset with a small a/A ratio. The brackets indicate a mismatch in the intercept, which
is related to the error in the Young modulus (Equations 2). Two possible positions of

log(d) origin are shown.

. X axis — normalized maximum indentation, Y axis — ratio of Young modulus
estimated from linear fit to modulus of top layer. Left panel ~ conical tip, right panel
— paraboloidal tip. Different lines correspond to different ratio of Lamé coefficients,

lines @ — g u correspond to 1,0.46, 0.22, 0.1, 0.046, 0.01, and 0.001, respectively.

13



4.

Reduced Young modulus plotted vs. normalized maximum indentation for
hyperboloidal tip (solid lines). Coordinates transformed according to the paraboloidal
tip Equations 7b, Here £=0.9-10>, and lines (from the top) correspond to #/(R cot )
ratios: 1.7, 1.2, 0.84, 0.58, 0.36 and 0.18. For comparison we show a calculation for

the paraboloidal tip (dashed line).

Ratio of the modulus estimated using Equation (8) to actual value given as function of
average load for samples of different thickness. Different lines correspond to different
layer thickness. The thickness (from 1 to 100 nm) is indicateq on the graph. Other
parameters: tip radius of curvature 10 nm, £=0.01, E=1 GPa, =0, k. 10 N/m, sample

oscillation amplitude 0.02 nm.

Plots of the reduced modulus vs. the normalized force for different 4 values illustrate
a possible error in the Young modulus as determined using the force-modulation
technique. Starting from the top 42 0.001, 0.0022, 0.0046, 0.01, 0.022, 0.046, 0.1,

»

0.22 and 0.46. Circles show an iterative process to determine the correction factor for

estimated Young modulus,

14
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